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We are developing highly sensitive, highly discriminating laser-based techniques for rapid determination of isotopic compositions. Rapid command of such 
information is critical to assessment of the origin and history of nuclear materials, particularly in post-detonation scenarios.
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How does RIMS work? Collaborative Science Sensitive, Selective Detection of Uranium

Laser Control is the Key! 

Secondary ions are supressed, 
neutral atoms form a cloud.
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Actinide isotopic compositions provide insight into 
the origin and history of nuclear materials. Such 
information is critical in post-detonation scenarios, 
when rapid delivery of information is vital, as well 
as pre-detonation scenarios and environmental 
work, where trace concentraions of materials 
and/or large environmental backgrounds create 
challenging analytical conditions.

Using state-of-the-art RIMS instruments, designed 
and built at Argonne National Laboratory, alongside 
the nuclear forensics expertise of Lawrence 
Livermore National Laboratory, we are carving a 
fresh path forward for isotopic analyses of nuclear 
materials.
 
Our collaboration is developing analytical methods 
aimed at providing rapid uranium isotopic 
information from solid samples, and has completed 
several crucial proof-of-concept measurements.
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Isotopic Selection of Uranium by Wavelength

The heart of the instrument: The ion gun (top), ion 
extraction cone (left) and target with a U-bearing 
sample (center) are illuminated by three lasers 
tuned to uranium resonances.  

Titanium-Sapphire crystals 
are the center of tunable 
laser cavities, where a 
diffraction grating permits 
the selection of 
fundamental wavelengths 
from 700-1000 nm.

Resonance and ionization 
lasers enter the instrument 
passing just in front of the 
sample (above), to interact 
with the cloud of neutral 
atoms created by the ion gun 
or an ablation laser. The 
extraction cone is then 
pulsed at high positive 
voltage initiating the 
acceleration of ions through 
the mass spectrometer.

CHARISMA
CHicago Argonne Resonance Ionization Spectrometer for Mass Analysis

The pulsed resonance and 
ionization laser beams are 
brought together, aligned 
in space and in time, and 
focused into the the 
instrument.
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First Proof-of-Concept Measurement

Large isotope shifts, characteristic of deformed nuclei  
including the actinides, mean that very small shifts in 
wavelength create large isotopic fractionations!

Uranium Isotope Fractionation in a Standard of Uniform 
Isotopic Composition as a Function of Wavelength
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d Broadening the laser bandwidth from 3 pm 
(left, blue data) to 10 pm (left, red data) 
makes measured isotope ratios much more 
robust. 

Further stabilization of narrow bandwith 
lasers may allow preferential enhancement 
of minor isootpes, advantageous for 
sensitive detection of trace isotopes in 
samples with dynamic range issues.
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3-color U RIMS with Isotope Shifts

All lasers ‘jitter’ in wavelength at some scale. Even 
2-3 pm control of laser wavelengths, however, is not 
sufficient to achieve stable measurement of uranium 
isotope ratios with narrow bandwidth lasers.

We have developed both 2- and 
3-color RIMS to maximize 
uranium sensitivity and 
selectivity, while minimizing 
background (non-resonant) 
molecules and ions.

In RIMS, tuning lasers even 
slightly off-resonance (see Ru 
example, above) causes the 
signal to vanish. This provides 
unambiguous identification of 
the element of interest, and direct 
accounting of any residual 
background.
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2- and 3-color RIMS schemes

We have been successful in 
detecting four U iosoptes in 
uranium metal, UO2, and U3O8 over 
a dynamic range of three orders of 
magnitude. Though preliminary, 
we have hda similar success on 
U-bearing ores and silicates.

Our next steps include plans to explore and optimize laser bandwidth schemes, the 
development of resonance ionization methods for Pu, and expanding measurements 
to “real world” samples such as complex oxides, debris and waste glasses.

Our 3-year goal is to provide U and Pu 
isotopic compositions to better than 1% precision

in less than 4 hours from the time of sample receipt.

Our initial exploration of uranium resonance ionization processes has enabled us to 
measure the 235U/238U ratio in a U3O8 standard to better than 0.5% precision, compared 
with a precision of ~10% errors just one year ago. We are continuing these 
experiments, and upgrading our lasers and equipment to make this measurment 
robust and routine.
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